



- L. Froidevaux<sup>1</sup>, J. Anderson<sup>2</sup>, H.-J. (Ray) Wang<sup>3</sup>, R. Fuller<sup>1</sup>, N. J. Livesey<sup>1</sup>, H. C. Pumphrey<sup>4</sup>, S. Davis<sup>5</sup>, K. Rosenlof<sup>5</sup>, R. McPeters<sup>6</sup>, S. M. Frith<sup>7</sup>, J. Wild<sup>8</sup>, J. M. Russell<sup>2</sup>, P. F. Bernath<sup>9</sup>, K. A. Walker<sup>10</sup>, J. M. Zawodny<sup>11</sup>, and L. W. Thomason<sup>11</sup>
- 1. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA

- Hampton University, Hampton, VA, USA
   Georgia Institute of Technology, Atlanta, GA, USA
   University of Edinburgh, Edinburgh, Scotland
   NOAA ESRL Chemical Sciences Division, Boulder, CO, USA
- 6. NASA Goddard Space Flight Center, Greenbelt, MD, USA
- 7. SSAI; NASA Goddard Space Flight Center, MD, USA
- 8. Wyle ST&E, NOAA/NCEP Climate Prediction Center, MD USA
- 9. Old Dominion University, Norfolk, VA, USA
- 10. University of Toronto, Toronto, Canada
- 11. NASA Langley Research Center, Hampton, VA, USA

## **GOZCARDS: Global OZone Chemistry And Related trace gas** Data records for the Stratosphere

part of the NASA MEaSUREs program

#### Satellite/Instrument Timeline and data versions



Timeline of satellite missions and instruments considered for the GOZCARDS project and the creation of a stratospheric composition Earth System Data Record (ESDR).

# Data Versions (for creating merged data records)

|          | <b>O</b> <sub>3</sub> | H <sub>2</sub> O | HCI |
|----------|-----------------------|------------------|-----|
| SAGE I   | 5.9                   | 1                | -   |
| SAGE II  | 6.2                   | -                | -   |
| UARS MLS | 5                     | 6                | -   |
| HALOE    | 19                    | 19               | 19  |
| ACE-FTS  | 2.2u                  | 2.2              | 2.2 |
| Aura MLS | 2.2                   | 3.3              | 3.3 |

#### **Common Grids**

- Mixing ratios (time, lat., p)
  - Monthly zonal averages
  - 10 degree latitude bins
  - $p(i)= 1000/10^{(-i/6)}$  i=0, 1, 2, .. (same as UARS pressure grid)

#### netCDF source files & merged files

- > include mean values, but also std. deviations, std. errors,
  - + info on local time, SZA, days used each month
  - + offsets applied to each source dataset

# GOZCARDS methodology for merging datasets (H<sub>2</sub>O, HCI)

- Merging process uses a bias correction method to tie time series together into one longer-term series
  - > obtain average offsets during overlap time period(s)
  - > make use of the good temporal coverage provided by MLS, and iterate using ACE-FTS and HALOE consecutively (weighting = 1/3 for each)
- > result (in H<sub>2</sub>O example below) is equivalent to using 3-way average during overlap period



## Methodology for HCl and H<sub>2</sub>O is basically identical

(but for  $H_2O$ , add UARS MLS as an extra step; also, ignore Aura MLS HCl for p < 10 hPa.)

# **Examples: GOZCARDS Offsets for H<sub>2</sub>O**



# **GOZCARDS** methodology for O<sub>3</sub>

- For each individual satellite dataset, first calculate monthly zonal means (in ppmv)
   for each 10° latitude bin and pressure level (~2.5 km spacing) with careful screenings.
- Adjust datasets to a reference level that is equal to or based on SAGE-II average
   then, average the adjusted (and collocated) datasets to derive a merged ozone record.



 Note: above 3.2 hPa, use adjusted HALOE (HALOE\*) instead of SAGE-II as reference, due to anomalous NCEP temperature trends after June 2000 (see next page)



(Left). **O**<sub>3</sub> **from SAGE-I/II**, **HALOE**, **UMLS/AMLS**, and **AGE-III** between 0 and 10°S at 46.4 hPa. (Right). Adjusted source datasets and merged time series for O<sub>3</sub> in same lat./p bin as left panel.

#### Monthly zonal mean ozone from SAGE, HALOE, MLS, and ACE

- Issue (mainly for upper strat. after mid-2000) [McLinden et al., 2011]
T-related (NCEP) drifts impact ozone time series for SAGE II data converted to VMR/p grid



### Comparisons between GOZCARDS and SWOOSH

- The Stratospheric Water and OzOne Satellite Homogenized (SWOOSH)
   database (from preliminary version Sean Davis, Karen Rosenlof, NOAA)
  - Datasets used
    - SAGE-II, UARS MLS, HALOE, Aura-MLS
      - > notes: SAGE II H<sub>2</sub>O not used in GOZCARDS (channel drift issue concerns) UARS MLS not (yet) used in SWOOSH O<sub>3</sub> data
  - Report monthly zonal means
     (both latitude/pressure and equivalent latitude/PV surfaces)
    - Volume mixing ratios (monthly means)
      - 18 latitude bins (every 10°) [also report data in 2.5°bins]
      - Aura MLS (v3.3) pressure levels
  - Merging method for SWOOSH
    - Use Aura-MLS as reference
       GOZCARDS uses SAGE II for O<sub>3</sub> and avg [HALOE, AMLS, ACE-FTS] for H<sub>2</sub>O
    - Calculate offsets based on collocated profile pairs (within latitude bins)
- Differences above (+ other diffs.) in source datasets and merging methods
  - → we do not expect a "perfect match" for GOZCARDS versus SWOOSH
    - but this is a **useful cross-check for O<sub>3</sub> and H<sub>2</sub>O results** (for both the GOZCARDS and SWOOSH teams)

#### O<sub>3</sub>: Comparisons between GOZCARDS and SWOOSH (V2.0) (1984-2010)



# Average differences of zonal means versus averages of coincidences SAGE II versus Aura MLS Ozone (2004-2005)



- Average offsets are not very dependent on the method used, although some larger differences can exist in more localized latitude bins.
- Diurnal effect plays a role in upper stratosphere / lower mesosphere
   nighttime Aura MLS values are used above for the coincident method
  - gives better average agreement with SAGE II twilight data

#### O<sub>3</sub> Comparisons: SWOOSH versus GOZCARDS anomalies (1984 to 2010)



#### O<sub>3</sub> Comparisons: homogenized SBUV versus GOZCARDS anomalies (1984 to 2010)

#### NASA Profile MOD (from R. McPeters, S. Frith, et al.)

- No offset corrections between different NOAA satellites



#### NOAA-MA-SBUV (from J. Wild et al.)

- Offset corrections are applied between different NOAA satellites



#### H<sub>2</sub>O: Comparisons between GOZCARDS and SWOOSH

Deseasonalized Anomalies and diffs. (SWOOSH - GOZCARDS)

Note: mean H<sub>2</sub>O differences for GOZCARDS versus SWOOSH (not shown here) are within 5% in most of the stratosphere.



Correlation Coefficients are ~ 0.9 to 0.95 for most of stratosphere

degrades somewhat for p < 3 hPa and p > 100 hPa.

Contours are in 0.1 increments between -0.9. to 0.9 and 0.03 increments thereafter.



Contours are in 0.05 ppmv/decade increments.

Grey shading indicates negative values



Contours are in 1 %/decade increments. Grey shading indicates negative values.

# H<sub>2</sub>O: Comparisons between GOZCARDS and SWOOSH H<sub>2</sub>O Anomalies (tracking the variability)



Yellow shading indicates slopes that are not statistically significant at the 3 sigma level. Contours are in 1 %/decade increments.

### **Temporal variations: A few more examples**

(slight amount of interpolation/smoothing applied)



Global merged HCl at 1 hPa (≈ total chlorine)

Witnessing (measuring) the rise and fall of the evil (chlorine) empire...

#### Column HCI (100 to 1 hPa)

- GOZCARDS trends appear consistent with ground-based total column results (~ - 0.8%/yr) (Jungfraujoch column data shown above)

## Temporal variations: A few more examples



## H<sub>2</sub>O: interesting LS variations

- as observed/discussed in literature (and at this meeting)
- but will the post-2004 rise continue?
- > implications for T, circulation, and climate

O<sub>3</sub>: LS ozone recovery?

- requires detailed analyses



O<sub>3</sub>: Is upper stratospheric ozone on its way back up?



## Temporal variations: A few more examples



#### H<sub>2</sub>O: interesting LS variations

- as observed/discussed in literature (and at this meeting)
- but will the post-2004 rise continue?
- > implications for T, circulation, and climate

O<sub>3</sub>: LS ozone recovery?

- requires detailed analyses



O<sub>3</sub>: Is upper stratospheric ozone on its way back up?



#### **GOZCARDS Status, Upcoming Work**

- Deliver HCl, O<sub>3</sub>, H<sub>2</sub>O, & T (MERRA) to GES DISC for access (starting this month)
- Write overview paper + GES DISC README guide (latter is essentially done)
- Continue GOZCARDS work on other species HF, CIO, HNO<sub>3</sub>, CH<sub>4</sub>, N<sub>2</sub>O, NO<sub>2</sub>, NO, CIO<sub>x</sub>, NO<sub>x</sub>
  - > some involve fewer instruments (may seem simpler, but also get less overlapping data)
  - > each species poses its own challenges

A lesson for the future: especially for occultation data (e.g., SAGE or ACE follow-on), good to have > 2 years of overlap with ongoing missions (if possible...)



- We expect community feedback, once GOZCARDS goes public
  - → some iteration possible
- GOZCARDS data records are generally as close as possible to the original data (after screening, despiking,...)
  - → there are (sometimes large) data gaps
- Users may want to smooth or fit data in different ways → trends, etc... (e.g., for SI<sup>2</sup>N)
  - > 'smart' sampling of models is useful
- Short-term portions of the series are only as good as the input datasets, but a long-term <u>carefully produced</u> ESDR should empower the user community to pursue further research.